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The combination of iterative Krylov-based eigenvalue algorithms and direct numerical
simulations (DNS) has proven itself an effective and robust tool in solving complex global
stability problems of compressible flows. A Cayley transformation is required to add flex-
ibility to our stability solver and to allow access to specific parts of the full global spectrum
which would be out of reach without such a transformation. In order to robustify the over-
all global stability solver an efficient ILU-based preconditioner has been implemented.
With this Cayley-transformed DNS-based Krylov method two flow cases were successfully
investigated: (i) a compressible mixing layer, a rather simple but well-known problem,
which served as a test case and (ii) a supersonic flow about a swept parabolic body, a chal-
lenging large-scale flow configuration.

� 2009 Elsevier Inc. All rights reserved.
1. Introduction

Linear hydrodynamic stability analysis plays a central role in identifying the dynamic behavior of infinitesimal perturba-
tions superimposed on a steady base flow. It is a crucial component for understanding the underlying mechanisms in a large
variety of fluid-dynamical applications. A sound understanding of the prevailing instability mechanisms for general shear
layers is, in turn, required to optimize and manipulate the inherent flow properties.

A classical tool to study the temporal instability of such flows is given by local stability theory, which in general relies on
the existence of two homogeneous and one inhomogeneous spatial coordinate direction. This approach dates back nearly a
hundred years and leads to an eigenvalue problems of moderate size which can be solved by standard direct techniques. The
assumption of two homogeneous directions, however, restricts local stability theory to flows with simple geometries and
simple flow physics. More complex and technologically relevant flow situations with several inhomogeneous directions
and/or complicated flow physics such as supersonic flow about blunt bodies, are beyond its reach. Instead, this type of flow
situations requires a global rather than a local approach.

Over the past decades direct numerical simulations (DNS) based on high-order spatial discretization schemes have estab-
lished themselves as a widely used tool to study complex flow problems. They aim at capturing all relevant physical features
of the flow by spatially resolving all dynamic scales; thus, no modeling efforts are required. The range of applications of
state-of-the-art direct numerical simulations is truly impressive in scope and complexity, and it is the aim of global hydro-
dynamic stability analysis – and the objective of this article – to harness these strengths and capabilities.
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Even though the global stability problem can be mathematically formulated, the lack of multiple homogeneous directions
yields a linear stability matrix whose sheer size makes a direct solution prohibitively expensive [46]. Limited computational
resources call for iterative eigenvalue methods (see, e.g., [11] for applications of iterative techniques in fluid mechanics) that
extract stability information from the linearized flow in an approximate manner. Among these iterative solution techniques
Krylov subspace methods [44] are particular popular for fluid-dynamical applications. Even though an explicit formulation
and storage of the stability matrix is a feasible alternative when combined with parallelization efforts [18], we will focus on a
Jacobian- or matrix-free environment where the necessary information for the global stability problem is directly extracted
from direct numerical simulations.

Compressible global stability problems have only recently been tackled (see, e.g., [9,10] for a study of the onset of tran-
sonic shock buffeting). Large-scale complex flow problems featuring multiple (temporal/spatial) scales and multi-physics
(shear and compressibility effects, acoustic waves, etc.) exhibit a complicated spectrum which requires special means to ex-
tract the relevant flow behavior. In addition, an erratic convergence history of standard iterative techniques is observed
which calls for additional physics-based measures, such as spectral transformations and preconditioning, to improve their
convergence towards specific global modes. Spectral transformations deform the complex eigenvalue plane in order to make
specific parts of the global spectrum accessible to iterative eigenvalue methods (an approach of this type has been proposed
by [32]). However, these transformations come at the expense of solving a large-scale linear system which, in accordance
with the above procedures, has to be accomplished using a preconditioned iterative method based on a matrix-free
approach.

Krylov subspace methods for hydrodynamic stability analysis of the incompressible Navier–Stokes equations were first
introduced by [11]. Their investigation of moderately complex flow situations allowed a simpler Jacobian-based implemen-
tation and did not require any type of spectral transformation. In the following years similar techniques have been compiled
into the open-source package ARPACK [24]. A comparative study of transformed Krylov subspace techniques applied to prob-
lems from computational fluid dynamics can be found in, e.g., [32,50,52], and further large-scale stability calculations have
been performed by [22,8]. The above studies, however, take advantage of the explicit presence of the linear stability matrix.
More recently, Arbenz et al. [2] compared eigensolvers for large-scale three-dimensional modal analysis using AMG-precon-
ditioned iterative techniques; all matrices are semi-positive definite and are, again, available explicitly. A state-of-the-art
review of Krylov subspace techniques applied to a wide range of fluid flows of aerodynamical interest is given by Theofilis
[46] with special emphasis on the global linear stability of non-parallel and three-dimensional flow configurations. Based on
his encompassing study we conclude that further progress in the field of global stability analysis has to involve a purely iter-
ative and matrix-free approach which provides the starting point of this article.

Preconditioning techniques (see, e.g., [19,33] for a recent overview) help improve the convergence of the linear system
solver. In a survey article, Benzi [5] provides a detailed overview of recent preconditioning strategies for large linear systems
mainly focusing on incomplete factorization techniques (ILU) and sparse approximate inverses (SPAI). A general discussion
on algebraic multigrid (AMG) as a preconditioner can be found in [49], and a specific application to AMG-accelerated BiCG-
Stab is given in [14]. While these references concentrate on preconditioning strategies for linear systems arising in Newton–
Krylov methods, the literature on transformation and preconditioning techniques for large-scale eigenvalue problems is rel-
atively sparse.

In this article we combine preconditioned Krylov-based techniques and direct numerical simulations (DNS) to obtain a
robust DNS-based Jacobian-free global stability solver for compressible flows. In this manner, our contribution represents,
on one hand, a generalization of the work of [11] towards compressible flows and, on the other hand, provides an extension
of current tools for the global stability analysis of non-parallel and three-dimensional flows, as alluded to by [46]. It builds on
previous global stability studies of compressible flow such as the work of Theofilis and colonius [47] who investigate the
behavior of cavity flows for a wide range of Mach numbers, the study of Robinet [36] who treats the interaction of a shock
with a laminar boundary layer within a global stability framework and the investigations of Crouch et al. [9,10] who treat the
onset of transonic shock buffeting as a global stability problem. Even though these studies are based on compressible gov-
erning equations they do not follow the approach taken in this article where an iterative stability solver is coupled to a direct
numerical simulation code, thus performing a DNS-based (matrix-free) global stability analysis.

In a historical and methodological context the linear stability of compressible flows can be studied by the following ap-
proaches: (a) the direct solution of a one-dimensional local stability problem, (b) the long-time integration of a direct numer-
ical simulation (DNS) starting with small-amplitude perturbations, (c) the direct or iterative solution of the global linear
stability matrix, and (d) the preconditioned iterative solution of a global linear stability problem. In this article we develop
the methodology for the latter approach (d) based on direct numerical simulations. In Section 2 we present our test case, a
compressible mixing layer, formulate the governing equations, briefly describe the linear stability theory for approaches (a),
(c) and (d) and display our reference spectrum. This is followed by the description of the DNS-based global stability solver for
approach (c) (Section 3) and our Cayley-transformed version (Section 4). We conclude with results in Section 5.
2. Compressible mixing layer: reference spectrum and DNS

It will be useful and instructive to demonstrate the global stability analysis of complex flows with the help of a somewhat
simplified flow configuration that possesses all the relevant physical and numerical features of the full problem while still
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allowing a comparison with reference solutions or analytical results. This way, we can design and assess the important com-
ponents of the DNS-based global stability solver and gain valuable insight and experience in using the governing parameters
to influence convergence properties and solution quality.

In view of the desired fields of application we consider a fully compressible flow that is dominated by advective, diffusive
and wave-propagation phenomena. These features will be reflected in the associated global spectrum in form of shear
modes, acoustic modes and combinations thereof which displays the typical features of many high-speed flows arising in
aeronautical applications. The chosen reference flow configuration, however, should be sufficiently simple to still allow a
solution by direct means; this point will particularly aid in the quality assessment of each approximate step taken in the
overall global stability algorithm.

A flow configuration that satisfies most, if not all, of the above described prerequisites is the compressible mixing layer. A
hyperbolic-tangent base velocity profile is assumed, and the flow field is subsequently linearized about this analytic base
state resulting in the linearized compressible Navier–Stokes equations governing the perturbation field. The stability of this
flow has been studied extensively, and the two landmark papers on this subject have been published by [30,7].

2.1. Governing equations

The dynamics of the mixing layer is governed by the compressible Navier–Stokes equations which have been formulated,
using Cartesian tensor notation, for the pressure p, the velocities ðu;v ;wÞ and the entropy s. We define a viscous length scale
d (shear-layer thickness), a Reynolds number Re, a Mach number Ma and a Prandtl number Pr as
d ¼ 2u1
xd

; Re ¼ u1d
m

; Ma ¼ u1
c1

; Pr ¼ Cpl
k

; ð1Þ
where xd ¼ ðdu=dyÞy¼0 and the subscript 1 stands for the freestream quantities. The remaining variables m;l; c1;Cp and k
denote, respectively, the kinematic and dynamic viscosity, the speed of sound, the specific heat at constant pressure and the
thermal conductivity. Using these expressions, the compressible Navier–Stokes equations can be rewritten in the following
non-dimensionalized form:
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Herein, a freestream entropy s1 ¼ Rc was assumed, where Rc denotes the gas constant. The variables c;. and T represent the
specific heat ratio, the density and the temperature, respectively.

The non-dimensionalized base flow in the streamwise x-direction is given by
u0ðx; y; zÞ ¼ tanhðyÞ �1 < y < þ1; ð3Þ
where the subscript 0 stands for base flow quantities; y and z represent the normal and the spanwise coordinate direction,
respectively (see Fig. 1). The base pressure p0ðx; y; zÞ ¼ 1 and the base entropy s0ðx; y; zÞ ¼ 1 are assumed to be constant.

The compressible Navier–Stokes equations, the equation of state, Fourier’s law for the thermal conductivity and Suther-
land’s law, where ambient conditions are used as a reference state, for the viscosity fully describe the flow. For all simula-
tions shown in this article, we consider the motion of a compressible fluid modeled as a perfect gas with constant specific
heat ratio c ¼ 1:4 and constant Prandtl number Pr = 0.71.

2.2. Linear stability analysis

In a next step towards a linear stability analysis we assume a three-dimensional small-amplitude perturbation field
�/0 ¼ �ðp0;u0;v 0;w0; s0ÞT superimposed on a steady base flow /0.
/ðx; y; z; tÞ ¼ /0ðx; y; zÞ þ �/0ðx; y; z; tÞ ð4Þ
From this the linearized Navier–Stokes equations for the perturbations
@/0

@t
¼ Jð/0Þ/0 ð5Þ



Fig. 1. Sketch of a mixing layer showing the base velocity profile (in blue), some of the relevant flow parameters and the Cartesian coordinate system (in
red). (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)
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are obtained, where Jð/0Þ denotes the linear stability operator. The compressible mixing layer (see Fig. 1) is then assumed to
be homogeneous in the x- and the z-direction, and periodic boundary conditions are applied in these directions. In the
remaining inhomogeneous y-direction, all disturbance quantities are assumed to decay exponentially in the freestream.
2.2.1. Local stability approach
Referring back to approach (a), mentioned at the end of the introduction, and taking advantage of the separability of the

governing equations in the two homogeneous coordinate directions, the disturbance field /0ðx; y; z; tÞ can be taken of the fol-
lowing traveling-wave form
/0ðx; y; z; tÞ ¼ ~/ðyÞeiðaxþbz�xtÞ; ð6Þ
where ~/ðyÞ denotes the complex amplitude, and a and b are the real wavenumbers of the perturbation in the streamwise and
the spanwise direction, respectively. The temporal long-term evolution of this type of disturbance is characterized by x
whose real part describes the frequency xr and whose imaginary part the corresponding growth rate xi. Upon substitution
of the above expression (6) into the perturbation equations (5) we obtain a one-dimensional eigenvalue problem
x ~/ ¼ Jð/0Þ ~/ for x and ~/. Once the dependence on the inhomogeneous y-direction is eliminated by a sixth-order compact
finite difference scheme [25] using ny grid points, we arrive at an eigenvalue problem for the linear stability matrix, i.e., the
5ny � 5ny Jacobian matrix, which can be solved numerically by direct means for each wavenumber pair ða; bÞ and for each
value of the remaining parameters.
2.2.2. Global stability approach
Many flow problems are characterized by a complex geometry or complex flow physics which no longer permits an

assumption of the form (6), e.g., owing to several inhomogeneous coordinate directions. Supersonic flow about a swept par-
abolic body, which will be considered later in this article (see Section 5.2), represents an example of this type. In this case, a
global rather than a local stability approach has to be considered which forms the basis for approach (c) and (d) as mentioned
at the end of the introduction.

For the global approach the disturbance field /0ðx; y; z; tÞ is assumed to satisfy
/0ðx; y; z; tÞ ¼ ~/ðx; yÞeiðbz�xtÞ; ð7Þ
where, as before, ~/ðx; yÞ denotes the complex amplitude and b the real spanwise wavenumber of the perturbation. This for-
mulation is referred to as BiGlobal in [46]. The long-term temporal stability of the perturbation is given by the global eigen-
value x. Under these assumptions and an appropriate discretization of the x- and y-dependence, the two-dimensional
(global) stability problem can formally be written as
xe/ðx; yÞ ¼ Jð/0Þ~/ðx; yÞ; ð8Þ
where Jð/0Þ represents the n� n linear stability matrix (the Jacobian), i.e., the discretized Navier–Stokes equations linearized
about the base state /0, with n ¼ 5nxny as the dimension of this (complex-valued) eigenvalue problem; nx and ny denote the
number of grid points in the x- and y-direction, respectively.

For linear stability matrices of moderate size, e.g., a dimension n � Oð105Þ, this eigenvalue problem can still be solved di-
rectly (see, e.g., [46] for a discussion on the solution of global eigenvalue problems). For more complex flow configurations
which require a large domain as well as a high spatial resolution, however, the direct solution of the (global) eigenvalue
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problem (8) is prohibitively expensive. Instead, iterative solution techniques have to be employed to extract pertinent sta-
bility information.

2.3. Long-time integration of the initial value problem

An alternative approach to address the stability of complex flows is given by the long-time solution of a linearized initial
value problem
Fig. 2.
ny ¼ 20
visualiz
moving
@/
@t
¼Fð/0 þ �/0|fflfflfflfflffl{zfflfflfflfflffl}

/

Þ; ð9Þ
where F represents the right-hand side of the nonlinear Navier–Stokes equations. The solution of (9) could be obtained from
direct numerical simulations (see, e.g., [46,20] for applications in fluid dynamics). This technique corresponds to approach
(b) as mentioned at the end of the introduction. Starting with an arbitrary initial condition of small amplitude �/0 (such that
nonlinear effects can be neglected) superimposed on a steady base flow /0, the solution of the initial value problem con-
verges towards the least-stable global mode as time progresses. The corresponding global eigenvalue can be computed from
this global mode in a straightforward manner.

2.4. Reference spectrum

A typical spectrum of the compressible mixing layer is displayed in Fig. 2(a), and the values of the four eigenvalues de-
picted in circles are shown in Table 1. This multi-branch spectrum was obtained using the local stability approach (see Sec-
tion 2.2.1), and it reveals characteristic features such as (i) acoustic modes with very small damping but rather high phase
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(a) Directly computed reference spectrum of a compressible mixing layer for Re ¼ 1000;Ma ¼ 0:5;a ¼ 0:397 and b ¼ 0 (see Table 2, ConfigIV);
1 grid points were used to resolve the inhomogeneous y-direction; unstable half-plane in grey. The spatial structure of two (local) modes is
ed by the (normalized) disturbance pressure using three periods in the periodic x-direction: (b) unstable (discrete) shear mode ðLM1Þ, (c) faster-
acoustic mode ðLM4Þ from the acoustic branch.



Table 1
Values of the four eigenvalues x ¼ xr þ ixi marked by circles in Fig. 2(a); they belong to the unstable shear mode ðLM1Þ, a representative weakly-damped
mode from the continuous shear-layer branch ðLM2Þ and a slow-moving ðLM3Þ as well as a faster-moving mode ðLM4Þ from the acoustic branch.

Mode LM1 LM2 LM3 LM4

xr 0 0.395973 0.459261 1.478955
xi 0.127146 �0.040255 �0.010807 �0.027631
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velocities (which reflects the fact that sound waves propagate quickly and without significant attenuation in their ampli-
tude), (ii) shear-layer modes displaying small phase velocities (which reflects the fact that shear instabilities propagate with
the local base velocity which is rather small inside the shear layer), and (iii) a continuous spectrum of modes that describes
the perturbation dynamics in the freestream and ensures the completeness of the eigenfunction basis [40]. Instabilities (with
xi > 0) are observed only on the shear-layer branch. The spatial structure of two representative eigenfunctions, one from the
shear-layer branch ðLM1Þ and one from the acoustic branch ðLM4Þ are shown in Fig. 2(b) and (c).

This spectrum which displays many features of more complex spectra for compressible flows will serve as a reference
spectrum on which we will develop, test and validate iterative solution techniques for the global hydrodynamic stability
problem.
2.5. Direct numerical simulations and validation of the code

The direct numerical simulations (DNS) are performed on a non-uniformly distributed grid using nx and ny grid points in
the x- and y-direction with a clustering of the ny grid points near y ¼ 0 to better resolve the shear layer. The governing equa-
tions are solved using a characteristic-type formulation [42] and discretized employing fifth- and sixth-order compact dif-
ference schemes for the inviscid and viscous terms, respectively [1,25]. For the initial value problem the temporal
discretization is accomplished by a fourth-order Runge–Kutta scheme (see [26] for details).

In what follows, all numerical investigations will focus on four selected flow configurations (Config I–IV) that represent a
range of physical and numerical features. The governing parameters for these examples are given in Table 2.

To validate the code direct solutions of the one-dimensional eigenvalue problem (see Section 2.2.1) as well as solutions of
the two-dimensional initial value problem (9) via direct numerical simulations are performed. In Table 3 these results are
compared with Blumen’s findings for selected parameter combinations (Config I–III), and the results for the parameter choice
of our reference case (Config IV) are shown too. In this manner, the Jacobian (used as a preconditioner) and the DNS-code are
validated. In addition, results from the solution of the two-dimensional (global) eigenvalue problem (8) obtained from a
DNS-based iterative stability solver (without transformation) are included as well. The used Krylov subspace method that
generated the latter results is described in Section 3, its spectrally (Cayley-) transformed version is developed in Section 4
and evaluated using the given reference spectrum (see Fig. 2).
3. Iterative stability analysis

The global linear stability analysis of complex fluid flows leads to a non-Hermitian eigenvalue problem (8) whose solution
requires iterative algorithms such as Krylov subspace methods. In many fluid-dynamical applications only a few eigenvalues
Table 2
Governing parameters of the four selected flow configurations (Config I–IV) which are defined by the shear-layer thickness d, the Reynolds number Re, the Mach
number Ma as well as the disturbance wavenumbers a and b.

Config # d Re Ma a b

I 0.1 !1 0.1 0.433 0
II 0.1 !1 0.5 0.397 0
III 0.1 !1 0.9 0.208 0
IV 0.1 1000 0.5 0.397 0

Table 3
Growth rate xi of the unstable shear mode as obtained by using the approaches (a)–(c) described at the end of the introduction; a resolution of nx ¼ 32 and
ny ¼ 201 grid points is used; Blumen’s [7] results are also included. For Config IV the unstable shear mode could not be computed via approach (b).

Config # [7] approach (a) approach (b) approach (c)
matrix-based DNS-based DNS-based

I 0.187 0.187521 0.1875 0.187521
II 0.141 0.141161 0.1412 0.141167
III 0.055 0.054731 0.0547 0.054723
IV – 0.127146 – 0.127155
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are needed to answer questions of interest, a requirement that also favors iterative techniques. In what follows, we adopt a
linear algebra notation with the matrix A � Jð/0Þ, the vector x � ~/ and the eigenvalue k � x, yielding a standard eigenvalue
problem given as kx ¼ Ax.

3.1. Krylov subspace methods

A common class of iterative eigenvalue algorithms is based on the premise that the full stability problem can be projected
onto a lower m-dimensional vector space given by an m-dimensional Krylov subspace sequence
KmðA;v1Þ ¼ span fv1;Av1;A
2v1; . . . ;Am�1v1g: ð10Þ
This sequence consists of repeated applications of a matrix A to an initial vector v1. The spectrum of the subsequent pro-
jected system then approximates the spectrum of the full stability problem given by A.

Among the general class of Krylov subspace methods, we choose the Implicitly Restarted Arnoldi Method (IRAM) proposed
by [43]. This method is briefly described as follows (for a more complete discussion the reader is referred to the cited
author): The Arnoldi method constructs an orthonormal basis Vm ¼ ½v1;v2; . . . ;vm� of the Krylov subspace Km which is then
used to decompose a matrix A in the following way:
AVm ¼ VmHm þ fmeT
m: ð11Þ
Hm denotes an m-dimensional upper Hessenberg matrix (with m� n), fm is the residual vector orthogonal to the basis Vm,
and em represents a unit-vector in the mth component. Multiplying both sides of (11) from the left by V�m and using the fact
that Vm is unitary, we obtain
V�mAVm ¼ Hm; ð12Þ
where the superscript * denotes the Hermitian conjugate. The eigenvalues fhjg of the Hessenberg matrix Hm, the so-called
Ritz values, are approximations of the eigenvalues fkjg of the matrix A, and the associated eigenvectors ~xj of A, the so-called
Ritz vectors, can be calculated using the orthonormal basis Vm as
~xj ¼ Vmyj; ð13Þ
where yj denotes the eigenvector of Hm associated with the eigenvalue hj. In general, some of the Ritz pairs ð~xj; hjÞ closely
approximate the eigenpairs ðxj; kjÞ of A, and the quality of this approximation usually improves as the dimension m of the
Krylov subspace sequence Km increases. In practice, however, the dimension of this subspace is limited by memory restric-
tions, and its ortho-normalization is progressively affected by numerical errors as m increases. For this reason, the Arnoldi
factorization (11) needs to be periodically restarted with a new starting vector vþ.

Sorensen’s implicit restarting strategy [43] computes this new starting vector vþ by a polynomial approximation of Kry-
lov vectors that damps p ¼ m� k undesired Ritz pairs, where k denotes the number of desired Ritz pairs. Lehoucq and Scott
[23] and Morgan [31] studied the issue of restarting and compared implicit restarting with other schemes; furthermore,
Morgan [31] and Sorensen [44] concluded that using implicit restarting and applying exact shifts in connection with the Ar-
noldi method is optimal. For details, including a discussion on the convergence behavior, we refer the reader to the above-
mentioned literature.

For the sake of completeness, a further class of Krylov subspace methods known as subspace iteration techniques (see,
e.g., [44]) is worth mentioning. As an example, Heeg and Geurts [16] successfully applied these techniques in their studies
on spatial instabilities of the incompressible attachment-line flow.

3.2. Jacobian-free framework

The form of the Krylov subspace sequence (10) indicates that the Jacobian matrix A � Jð/0Þ does not need to be formed
explicitly; rather, only matrix-vector products are necessary to perform the Arnoldi decomposition. These matrix-vector
products are readily obtained from direct numerical simulations (DNS) via
Avi 	
Fð/0 þ �viÞ � Fð/0Þ

�
¼ @Fð/Þ

@/

����
/¼/0

vi þ Oð�Þ with i ¼ 1;2; . . . ;m� 1; ð14Þ
where � is a user-specified parameter, /0 and vi � /0 denote, as before, the base flow and a disturbance field, respectively,
and F represents the discretized right-hand side of the nonlinear Navier–Stokes equations. This first-order finite difference
approximation of the Jacobian matrix Jð/0Þ allows a Jacobian-free framework where right-hand side evaluations from direct
numerical simulations provide the input for the iterative stability solver. Consequently, an explicit linearization of the gov-
erning Eqs. (2a–c) is no longer required. A matrix-free approach reduces memory requirements considerably and removes
the problem of explicitly forming and storing the high-order Jacobian matrix. This advantage significantly simplifies the
overall global stability method.

The choice of � is, however, not obvious: if � is too large, the derivative will be poorly approximated and if � is too small,
the result will be contaminated by roundoff errors. A widely used choice represents
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� ¼ k/0k2

kvik2
�0; ð15Þ
where �0 is a small parameter which is typically chosen somewhat larger than the square root of machine epsilon. For a dis-
cussion on common choices for � as well as higher-order approximations for Eq. (14) the reader is referred to [19] and the
references therein.

It should be mentioned though, that this matrix-free formulation further introduces a considerable amount of flexibility
in forming the linear stability matrix. The call to the right-hand side F in Eq. (14), which in our case consists of a direct
numerical simulation code for the compressible Navier–Stokes equations, can easily be substituted by other numerical dis-
cretizations of the corresponding governing equations. In particular, the entire hierarchy of common models for high-Rey-
nolds number flows in complex geometries (such as, e.g., large-eddy simulations (LES), detached-eddy simulations (DES),
vortex-particle methods and even commercial codes) can be treated within the same framework. Stability results using this
Jacobian-free framework can thus be obtained for any flow whose main features can be captured to a sufficient degree of
accuracy by appropriate numerical simulations.
4. Convergence acceleration and control

The need for convergence acceleration arises from the fact that high resolution simulations of complex fluid flow physics
(with, e.g., the coexistence of shear and acoustic modes as illustrated in our reference spectrum, see Fig. 2(a)) lead to an
unpredictable and erratic convergence behavior of the simple Arnoldi method (without transformation). In addition, any
thorough investigation of complex fluid flow behavior requires us to focus on specific parts of the global spectrum. For exam-
ple, to investigate the acoustic near- and far-field as to its structure and directivity it is necessary to extract global modes
from the acoustic branch. To direct the convergence of the Arnoldi method towards these modes a transformation of the
complex eigenvalue plane can be used. In short, both convergence acceleration and convergence control are desired for
an effective DNS-based global stability solver. It must be stressed, however, that any technique employed to accelerate or
control the convergence of the global stability solver has to be of an iterative and matrix-free nature to preserve the appli-
cability of the method to a wide range of complex fluid-dynamical problems.

4.1. Inexact Cayley transformation

To accelerate and control the convergence behavior of the global stability algorithm the Cayley transformation [15] is ap-
plied. This transformation consists of a two-parameter conformal mapping of the complex plane and, for generalized eigen-
value problems of the form kBx ¼ Ax, is defined as
TCðr;lÞ � ðA� rBÞ�1ðA� lBÞ; ð16Þ
where r and l are the mapping parameters. For standard eigenvalue problems, as it is the case for our problem, we have
B ¼ I where I denotes the identity matrix. This transformation represents a more general mapping than the more commonly
applied shift-invert technique (see, e.g., [12,46]).

The complex parameter r acts as a shift parameter, and eigenvalues close to it are mapped far into the right-half plane for
Imagfkg < Imagfrg < Imagflg while eigenvalues far from it are mapped close to one (see Fig. 3). The second complex
parameter l introduces an additional stretching-and-rotation effect on the transformed spectrum. Its major role, however,
consists in controlling the condition number of the linear transformation. For this reason, the Cayley transformation in gen-
eral yields a better-conditioned linear system than the shift-invert transformation (see [22]), an important advantage for its
iterative solution. In addition, [21] report ‘‘the superior numerical performance of a Cayley transformation over that of a
shift-invert transformation within an Arnoldi method when using an iterative linear solver”.

The eigenvalues k of (A,B) are then recovered from the eigenvalues n of the transformed problem via
k ¼ rn� l
n� 1

; ð17Þ
while the eigenvectors x are not affected by the transformation.
Fig. 3 demonstrates the Cayley transformation for our reference spectrum (see Fig. 2(a)). Two parameter settings for r and

l are displayed: the first parameter combination focuses on the unstable shear mode LM1 (see Table 1) whereas the second
parameter combination aims at extracting a specific mode LM4 from the acoustic branch. The first configuration illustrates
the possibility of convergence acceleration of the Arnoldi method, while the second configuration demonstrates the Cayley
transformation as a convergence control tool. The general mapping between the complex k- and the complex n-plane is fur-
ther visualized by the dashed Cartesian grid in Fig. 3(a) and its mapped counterparts in Fig. 3(b) and (c). For an overview of
available acceleration techniques we refer the reader to [3].

The Cayley transformation (16) requires the solution of the following generally non-Hermitian linear system
ðA� rIÞvjþ1 ¼ ðA� lIÞvj ð18Þ
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Fig. 3. (a) Relabeled reference spectrum ðk � xÞ as presented in Fig. 2(a); the two eigenvalues marked by circles belong to xLM1 (in red) and xLM4 (in blue);
(b) and (c) display Cayley-transformed spectra for the mapping parameters r ¼ RealfxLM1g þ 2i and l ¼ RealfxLM1g þ 8i and r ¼ RealfxLM4g þ 2i and
l ¼ RealfxLM4g þ 8i, respectively. A dashed Cartesian grid as well as the unstable half-plane (in grey) and their mapped counterparts are also shown. The
green line indicates the region of convergence of the Cayley-transformed Arnoldi method. (For interpretation of the references to colour in this figure
legend, the reader is referred to the web version of this article.)
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for each outer step of the Arnoldi method to construct the ðjþ 1Þth Krylov vector in (10). This is accomplished by using a
Krylov-based iterative linear solver. From the commonly applied techniques of Generalized Minimum Residual (GMRES)
method [38], stabilized Bi-Conjugate Gradient Iteration (BiCGStab) [51] and transpose-free quasi minimum residual
(TFQMR) method [13], we choose the BiCGStab algorithm since its three-term recurrence relation results in low memory
requirements. The solution of the linear system (18) by an iterative method can only be approximate; as a consequence,
the Cayley transformation (16) is necessarily inexact (see, e.g., [29] for a discussion on inexact transformations).

The necessity of an iterative solution technique for solving (18), however, restricts the choice of Cayley parameters, and
the resulting linear system yields solutions only if the shift parameter r is chosen sufficiently far from an eigenvalue, thus
avoiding an ill-conditioned matrix. Considerations like this can be ignored when a direct inversion is attempted. For a dis-
cussion of the choice of the Cayley parameters the reader is referred to, e.g., [8] and the references therein.

4.2. Preconditioning

An efficient iterative solution of (18) requires a reliable and robust preconditioning technique. This has also been stated
by Benzi [5] who considers preconditioning as the ‘‘most critical ingredient in the development of efficient solvers for chal-
lenging problems in scientific computation”. For this reason, there exists a large body of literature on preconditioning strat-
egies, and the reader is referred to, e.g., [5,35,33] for an overview.

State-of-the-art preconditioning techniques require in general a preconditioning matrix in explicit form, as reported by
[19]. These authors also discuss Jacobian-free preconditioning strategies for linear systems and conclude that ‘‘the only iter-
ative method that can be implemented in a fashion that is literally matrix-free is a Krylov method”.

In our global stability algorithm we maintain a Jacobian-free implementation via direct numerical simulations but as-
sume the preconditioning matrix in explicit form. Applying this (shifted) preconditioning matrix Pr ¼ P� rI from the right,
the modified expression of the finite difference approximation (14) reads
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A P�1
r p|ffl{zffl}
p̂

	 Fð/0 þ �P
�1
r pÞ � Fð/0Þ
�

; ð19Þ
where p denotes an iteration vector in the BiCGStab algorithm (see [51] for details). This expression has to be evaluated each
time a matrix-vector product is required in the inner iteration, the solution of Eq. (18) of the Krylov-based linear solver. The
outer Arnoldi iteration is not affected by Pr.

Preconditioning the inner iterations raises two important questions related to the choice of P and the manner of solving
the required linear system Prp̂ ¼ p. For P we choose a second-order finite difference approximation of the Jacobian matrix.
Owing to the sparsity of P we can take advantage of efficient incomplete decomposition techniques. The degree of ‘‘incom-
pleteness” is given by the chosen sparsity structure of the decomposition. For general matrices, the LU-decomposition results
in upper/lower triangular matrices that are dense. Incomplete decompositions, on the other hand, yield matrices that have a
characteristic sparsity pattern and can be inverted efficiently by standard algorithms. In our case we choose an incomplete
LU-decomposition, i.e., the dual truncation technique ILUTðp; sÞ in which dropping during the factorization is based on two
user-specified parameters: the fill level p and the drop tolerance s [37]. This strategy was successfully applied by [35] to pre-
condition complex-valued matrices, and as a dropping rule for a given fill level maximally p super-diagonal and p sub-diag-
onal elements are kept in each row of LU.

Denoting our low-order approximation of the Jacobian matrix by Plow we can recast Eq. (19) as follows
AhighP�1
low;rp 	

Fhighð/0 þ �P
�1
low;rpÞ � Fhighð/0Þ
�

; ð20Þ
which illustrates the combination of high-order Jacobian evaluation with low-order preconditioning, denoted by the sub-
scripts high and low, respectively. For the sake of simplicity, these subscripts are omitted for A and P in the following.

Ideal preconditioning would result in eigenvalues of ArP�1
r ¼ ðA� rIÞðP� rIÞ�1 at one. In practice, however, one has to be

content with a clustering of the eigenvalues of ArP�1
r about one. The quality of a preconditioner can thus be measured by the

distance of these eigenvalues from one but also by their distance from the origin which is necessary to avoid ill-conditioning.
These eigenvalues depend on four factors: (i) the discretization in A � Jð/0Þ, (ii) the choice of P (discretization, formulation,
etc.), (iii) the technique employed to efficiently invert Pr and (iv) the choice of the shift parameter r.

4.3. Proposed global stability algorithm (PCIRAM)

In summary, our proposed DNS-based global stability solver consists of the five steps (S1–S5) shown below. This solver
requires the user to specify several parameters which are related to the implicitly restarted Arnoldi method ðm; k; tolAÞ, the
Jacobian-free implementation ð�0Þ, the Cayley transformation ðr;lÞ, the iterative linear solver ðtolBÞ, and the ILUT-precondi-
tioner ðp; sÞ. Additionally, the starting vectors v1 and vjþ1;0 for the Arnoldi method and the iterative linear solver are required.

S1. Compute the base flow /0 (if not available in analytic form)
S2. Compute and save Fhighð/0Þ (required for the Jacobian-free framework)
) Call right-hand-side in DNS to compute Fhighð/0Þ
S3. Setup the preconditioning matrix P by a low-order approximation of the high-order Jacobian matrix A, and compute
the incomplete LU-decomposition of Pr ¼ P� rI.

S4. Perform outer Arnoldi iterations to solve the (global) eigenvalue problem
kx ¼ Ax
(A) Choose initial condition v1

(B) Iterate until convergence: for j ¼ 1;2; . . .

B.1 Apply Cayley transformation and compute vjþ1
ðA� rIÞvjþ1 ¼ ðA� lIÞvj|fflfflfflfflfflfflffl{zfflfflfflfflfflfflffl}
b

(a) Obtain the matrix-vector product in b using
Avj 	
Fhighð/0 þ �vjÞ � Fhighð/0Þ

�

) Call right-hand side in DNS to compute Fhighð/0 þ �vjÞ
(b) Perform inner iterations of ILU-preconditioned BiCGStab to solve
ðA� rIÞP�1
r Prvjþ1 ¼ b
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(b.1) Choose initial condition vjþ1;0

(b.2) Iterate until convergence: for i ¼ 1;2; . . .

(a) Incomplete solution of Prp̂ ¼ p
(b) Obtain the matrix-vector product via
Ap̂ 	 Fhighð/0 þ �p̂Þ � Fhighð/0Þ
�

) Call right-hand side in DNS to compute Fhighð/0 þ �p̂Þ
(c) Check for convergence of vjþ1;i via
krik=kbk 6 tolB;

where ri denotes the current residual error and tolB is a user-specified tolerance parameter.
B.2 Check for convergence of the desired Ritz pairs ð~xj; hjÞ using the Ritz estimate
jbmeT
myjj 6 maxð�MkHmk; tolA 
 jhjjÞ;

where bm ¼ kfmk; �M stands for machine epsilon and tolA denotes a user-specified tolerance parameter.

S5. Finally, recover eigenvalues k of A via
k ¼ rh� l
h� 1

;

while the eigenvectors x follow from ~x.
5. Results

After having established and analyzed the components of an iterative global stability solver based on direct numerical
simulations (DNS), we now demonstrate its effectiveness in extracting information of the perturbation dynamics on two
examples. The first example continues our test case of the compressible mixing layer introduced in Section 2. The second
example concerns supersonic flow about a swept parabolic body where the global treatment of the associated stability prob-
lem will yield new physical results and provide a significant numerical challenge to our global stability algorithm.

All numerical simulations shown in this article have been performed on an SGI Altix 4700 with a clock rate of 1.6 GHz. For
all cases considered in the next sections, the initial condition v1 for the implicitly restarted Arnoldi method (IRAM) has been
taken as a field of randomly distributed values, localized in space in order to satisfy the appropriate boundary conditions.

5.1. Example 1: compressible mixing layer

The compressible mixing layer, introduced earlier, represents a generic flow configuration that can be observed, at least
locally, in many technological and industrial applications. In our investigation we will focus on the unstable shear mode
ðLM1Þ and a specific mode from the acoustic branch ðLM4Þ as depicted in Fig. 2 as well as on some selected parameter set-
tings (see Table 2 for details); we will discuss flexibility, accuracy, robustness and efficiency of our global stability solver
employing three methods: (i) the (simple) implicitly restarted Arnoldi method (IRAM), (ii) its Cayley-transformed but unpre-
conditioned version (abbreviated as CIRAM) and (iii) its Cayley-transformed and ILU-preconditioned variant (abbreviated as
PCIRAM). As parameters for the Arnoldi method we set m ¼ 80; k ¼ 32 and tolA ¼ 10�4, and we choose �0 ¼ 10�8 for the Jaco-
bian-free implementation.

5.1.1. Increasing flexibility: the Cayley-transformed IRAM
We start by studying the Cayley-transformed implicitly restarted Arnoldi method (PCIRAM) as our proposed global sta-

bility algorithm (see Section 4.3) and demonstrate its flexibility in computing specified regions of the global spectrum (re-
lated to shear modes or acoustic modes) by adjusting the Cayley parameters. For this purpose, the two configurations
displayed in Fig. 3(b) and (c), the first for the Cayley parameters r ¼ RealfxLM1g þ 5i and l ¼ RealfxLM1g þ 20i and the sec-
ond applying r ¼ RealfxLM4g þ 5i and l ¼ RealfxLM4g þ 20i have been chosen, and the global spectra (a) and associated
global modes (b) and (c) are visualized by the disturbance pressure ~pðx; yÞ in Fig. 4. Guess values for the Cayley parameters
have to be taken when no prior information or estimates of the flow behavior are available; an iterative adapting of these
parameters is conceivable. The real part of each (normalized) mode is plotted using three periods in the periodic x-direction.
A clear distinction between global modes with support in the areas of highest shear ðGM1Þ and acoustic modes with non-
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Fig. 4. (a) Two spectra (in red and blue) which have been computed via our DNS-based global stability solver PCIRAM using the Cayley transformations
displayed in Fig. 3(b) and (c), respectively. The eigenvalues belonging to xLM1 and xLM4 (see Table 1) are indicated by circles; the directly obtained spectrum
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part of the (normalized) pressure. Parameters given in Table 2 (Config IV) have been chosen, and 32� 201 grid points have been used to resolve the x- and
the inhomogeneous y-direction, respectively (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of
this article.).
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zero amplitudes in the freestream ðGM4Þ can be made. The successful extraction of these modes from the general spectrum
demonstrates the increase in flexibility of the DNS-based global stability solver as the Cayley transformation is added. As
expected, the two-dimensional global spectrum is far more complex due to a superposition of modes with multiple stream-
wise scales as a consequence of a discretization in the streamwise x-direction. Therefore, it should not come as a surprise
that the Arnoldi method does not necessarily converge to the global acoustic mode shown in Fig. 2(c). Instead, the PCIRAM
extracts the least-stable global modes with respect to the chosen Cayley parameters.

The possibility of the Cayley-transformed IRAM of exploring desired parts of the full global spectrum represents at the
same time a significant drawback of the Arnoldi method without such a transformation which, applied to the same choice
of flow parameters, converges to only the unstable mode and a random sample of other modes, such as fast-traveling acous-
tic modes (see Fig. 4(a) black dots). No influence over the convergence towards specific modes, however, can be exerted.

5.1.2. Increasing accuracy: the influence of the parameter �0

An important component of our global stability solver contains the replacement of the exact Jacobian matrix Jð/0Þ by a
first-order finite-difference approximation (see Eq. (14)). This approximation crucially depends on a user-defined parameter
�0. In particular, we are interested in the influence of �, computed via Eq. (15), on the accuracy of the Ritz values as well as
the Ritz pairs.

For this analysis, we resort to the (simple) implicitly restarted Arnoldi method (IRAM) to delineate the effects of �0 from
those introduced by the inexact Cayley transformation and by the preconditioner. The influence of �0 on our solution is mea-
sured by two quantities, namely, the relative error and the direct residual.

The first quantity, the relative error e1, is defined as
e1ð�0Þ ¼
jx2D;DNSð�0Þ �x1Dj

jx1Dj
; ð21Þ
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Fig. 5. (a) Relative error e1 and (b) direct residual kr1k as a function of the user-specified parameter �0 for four selected flow configurations (i)–(iv); see text
for details. The (simple) implicitly restarted Arnoldi method (IRAM) was applied.
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where x2D;DNS � h1 denotes the least-stable Ritz value of the global DNS-based calculation and x1D represents the least-sta-
ble eigenvalue of the one-dimensional eigenvalue problem obtained by direct means (as shown in Table 3).

The second quantity, the direct residual kr1k (see [24]), provides a measure of the accuracy of the computed least-stable
Ritz pair ð~x1; h1Þ; it is defined as
kr1ð�0Þk ¼
kJð/0Þ~x1 � ~x1h1k

jh1j
: ð22Þ
To cover a range of parameters, the following four flow configurations have been investigated (see Table 2 for details about
Config I and III): (i) a low Mach-number case with a rather low resolution (Config I, nx ¼ 16;ny ¼ 101), (ii) the same low
Mach-number case but with a higher resolution (Config I, nx ¼ 32;ny ¼ 201), (iii) a high-Mach number case with the previous
high resolution (Config III, nx ¼ 32;ny ¼ 201) and, finally, (iv) a high-Mach number case with a low Reynolds number (Config
III with Re ¼ 1000;nx ¼ 32;ny ¼ 201). The results are summarized in Fig. 5 where the evolution of the relative error e1 and
the norm of the direct residual kr1k are displayed versus �0 (with �0 ranging from 10�2 to 10�15 as a consequence of the dou-
ble precision arithmetic).

In the case of the relative error e1 (see Fig. 5(a)), the curves for each of the four cases show a similar shape: a rather small
relative error plateau for a moderate range of �0 (10�6 to 10�11) and a rapidly increasing relative error as we tend towards
larger ð10�2Þ and smaller ð10�15Þ values of �0. The range of values where e1 is nearly independent of the parameter �0, how-
ever, depends itself on the value of e1; this means that the more accurate the least-stable Ritz value is determined – resulting
in a smaller value of e1, – the more narrow is its range of independence from �0.

Different results are found for the direct residual kr1k (see Fig. 5(b)): instead of a plateau suggesting a range of optimal
values for �0, a distinct choice of �0 	 10�8 yields the lowest residual norm; for values larger or smaller than this critical va-
lue, the residual norm increases substantially.

It is important to keep in mind, though, that for non-Hermitian matrices A � Jð/0Þ a low direct residual does not neces-
sarily imply an equivalent low error, and that the converged Ritz pair ð~x; hÞmay not represent an accurate approximation of
the corresponding eigenpair ðx; kÞ � ð~/;xÞ. Direct residual and error are linked via the condition number of the system ma-
trix A, and an ill-conditioned system may yield inaccurate solutions. For precisely this reason do we observe a distinct pla-
teau in the error (see Fig. 5(a)) but a lack thereof in the direct residual (see Fig. 5(b)). As far as the user is concerned the
precise choice of �0 is not critical as long as it falls within the range of values defined by the plateau.
5.1.3. Increasing robustness: an analysis of the growth rate and the direct residual
The results of our investigation into robustness of the proposed methods are demonstrated and summarized in Table 4. In

it we compare findings obtained by applying (i) the simple untransformed, (ii) the Cayley-transformed but unpreconditioned
and (iii) the Cayley-transformed and ILUT-preconditioned Arnoldi method. Only the convergence to the least-stable shear
mode x1, with Realfx1g ¼ 0, and its dependence on a representative choice for the governing parameters are considered
here. We observe that for the low-Mach number case (see Table 2, Config I) the Cayley-transformed but unpreconditioned
Arnoldi method failed to produce accurate results (see CIRAM in Table 4. The ILUT-preconditioned version, on the other
hand, converged towards the least-stable Ritz pair. With the exception of the failed computation employing the (unprecon-
ditioned) CIRAM for the low-Mach number case (Config I) the accuracy of the results listed in Table 4 are satisfactory.



Table 4
Growth rates Imagfx1g and associated direct residuals kr1k applying the simple (IRAM), the Cayley-transformed but unpreconditioned (CIRAM) and the
Cayley-transformed and ILUT-preconditioned Arnoldi method (PCIRAM) for the four flow configurations defined in Table 2 and a resolution 32� 201. For the
inexact Cayley-transformation we set r ¼ 5i;l ¼ 20i and tolB ¼ 10�5 and as preconditioner we used ILUTð10;10�2Þ.

Config # IRAM CIRAM PCIRAM

Imagfx1g kr1k Imagfx1g kr1k Imagfx1g kr1k

I 0.187521 3.3e�5 (0.114675) 2.0e1 0.187520 7.5e�4
II 0.141167 5.1e�6 0.141167 4.4e�4 0.141165 6.3e�5
III 0.054723 2.6e�5 0.054723 1.1e�4 0.054723 5.4e�5
IV 0.127155 6.2e�6 0.127154 5.7e�5 0.127154 4.4e�5
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5.1.4. Increasing efficiency: the performance of the proposed stability solver
The application of a preconditioner P in the solution of Eq. (18) has proven imperative for the extraction of the least-stable

mode for low-Mach numbers (see Table 4). Even for converging cases the preconditioner plays a secondary role as it dramat-
ically improves the efficiency of the Cayley-transformed Arnoldi method (see Table 5). With this in mind, we compare the
convergence behavior of our solver by applying various preconditioner matrices from the class of incomplete LU decompo-
sition techniques denoted by ILUTðp; sÞ.

The results of our numerical experiments are shown in Fig. 6(a) displaying the relative residual krk=kbk as a function of
the number of BiCGStab iterations. Best results are obtained – not surprisingly – by applying the complete LU-precondition-
er, since no approximations (other than the low-accuracy discretization in P) have been made, resulting in a true inverse of
the linear system Prp̂ ¼ p (see Section 4.2). To reach the same relative residual level of krk=kbk 6 tolB ¼ 10�5 the LU-precon-
ditioned BiCGStab required 12 instead of 122 iterations (unpreconditioned). The impressive convergence acceleration, how-
ever, hides the fact that computing the full LU-decomposition as well as the solution of Prp̂ ¼ p is, due to the number of non-
zero entries nnz of P�1

r (see Table 5), excessively costly for general matrices and thus unattractive for our application. Pre-
conditioners based on the incomplete LU-decomposition also show a dramatic increase in convergence speed but do not in-
cur the cost of a full LU-decomposition; ILUTð10;10�2Þ and ILUTð10;10�3Þ require 21 and 24 iterations, respectively, to reach
a relative residual level of krk=kbk 6 tolB ¼ 10�5. Therefore, ILUT-preconditioners represent a class of effective and efficient
convergence acceleration techniques.

The size of the fill level p, at least for values within a range that still optimizes memory requirements, does not substan-
tially influence the convergence behavior. [35] report that ‘‘the rule of thumb is to take a large ½p� value, and use ½s� to control
the amount of fill-in. This generally yields good results without compromising memory efficiency.” We have identified a fill
level p ¼ 10 as satisfying this requirement, and we found a drop tolerance s ¼ 0:01� 0:005 to be an optimal choice for
ILUTð10; sÞ in terms of cost-efficiency of our iterative linear solver. The reader is referred to the latter authors as well as
to [6] for a discussion on tuning ILUT-type preconditioners and on enhancing their performance by using techniques such
as reordering.

Results from numerical experiments for supersonic flow about a swept parabolic body (see Fig. 8) are presented in
Fig. 6(b). As before, ILUT-based preconditioning is found to be capable of dramatically improving the speed of convergence
0 10 20 30 40 50 60 70
10−8

10−6

10−4

10−2

100

102

0 50 100 150 200
10−8

10−6

10−4

10−2

100

102

Fig. 6. Relative residual as a function of the number of BiCGStab iterations for unpreconditioned (noP stands for ‘‘no preconditioner P”) and selected
preconditioned computations: (a) Config IV with a resolution of 32� 201 grid points and (b) convergence results for a more challenging flow case given by
supersonic flow about a swept parabolic body (see Section 5.2).



Table 5
Results from performance tests for the simple and the Cayley-preconditioned Arnoldi method showing the number of non-zero entries nnz of P�1

r , the total
number of required matrix-vector multiplications (# of matvec), the number of outer iterations of the Arnoldi method (# of outer iterations) and the CPU time;
Config IV with a resolution of 32� 201 grid points is used (see Table 2). For the inexact Cayley-transformation we choose r ¼ 5i;l ¼ 20i and tolB ¼ 10�5.

Method Ptype nnz # of matvec # of outer iterations CPU time (h)

IRAM – – 338245 13548 13.28
CIRAM – – 6252 211 6.65
PCIRAM ILUTð10;10�1Þ 159263 6909 218 4.10

PCIRAM ILUTð10;10�2Þ 219977 5777 172 3.58

PCIRAM ILUTð10;10�3Þ 331412 6286 192 3.89

PCIRAM ILUK(0) 674532 5242 153 4.06
PCIRAM ILUK(1) 1891106 5587 175 5.60
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for BiCGStab. The results indicate, however, that this time a larger value of the fill level p is required to obtain a robust pre-
conditioner; again, a drop tolerance s ¼ 0:01� 0:005 seems to be an appropriate choice.

In Table 5 we provide details on the performance tests for the (simple) implicitly restarted Arnoldi method (IRAM) as well
as variants of the Cayley-transformed IRAM. This table contains the number of non-zero entries nnz of P�1

r , the total number
of matrix-vector multiplications (# of matvec), the number of outer iterations of the Arnoldi method (# of outer iterations)
and the CPU time. It is found that ILU-based preconditioning techniques can be successfully applied to increase the efficiency
of the global stability solver and that PCIRAM with ILUT-based preconditioning performs best in terms of CPU time.

5.1.5. Preconditioned spectra
Finally, to judge the effectiveness of the applied preconditioners we extract the product of P�1

r and the high-order system
matrix A using the finite difference approximation
Mð:; iÞ ¼ AP�1
r ei 	

Fhighð/0 þ �P�1
r eiÞ � Fhighð/0Þ
�

with i ¼ 1;2; . . . ;n; ð23Þ
and compute the eigenvalues kM of Mr ¼M� rP�1
r . The notation Mð:; iÞ stands for the ith column of the matrix M 2 Cn�n, and

the above expression is analogous to Eq. (20). The asymptotic convergence behavior of the preconditioned system can then
be deduced from how closely the eigenvalues of Mr cluster about one – the ideal spectrum.

In Fig. 7 we present the spectra of Mr for four preconditioners employed in the previous subsection (see Table 5), where a
parameter value of �0 ¼ 10�8 and a shift parameter r ¼ 5i have been used. The resolution was decreased to 8� 201 grid
points in order to be able to perform a (complete) eigenvalue decomposition. The spectrum based on a complete LU decom-
position (in black) is used as a reference to assess the quality of four ILU-based preconditioners. It is found that decreasing
the drop tolerance in ILUTðp; sÞ from s ¼ 10�1 to 10�3 (see Fig. 7(a)–(c)) leads to more spectral clustering about one and, as a
consequence, to an increase in convergence speed of the preconditioned BiCGStab (see Fig. 6(a)). The configuration ILUK(1)
displays the best spectral properties (see Fig. 7(d)). This preconditioning technique comes, however, at the expense of more
floating-point operations (represented by a larger computational time) due to a larger number of non-zero entries nnz of P�1

r
(see Table 5).

5.2. Example 2: supersonic flow about a swept parabolic body

We will now turn our attention to the second example which describes supersonic flow about a swept parabolic body. In
this configuration the flow impinges through a bow shock onto the body forming a local stagnation flow near the attachment
line which further downstream turns into a three-dimensional curved boundary-layer flow. It thus should not come as a sur-
prise that this flow comprises a multitude of instability features that will also be reflected in the full global spectrum. There
exists an abundance of literature, (e.g., [45,4,17,39,27]) that provides evidence for the following characteristic properties
regarding the perturbation dynamics: (i) inside the boundary layer boundary-layer modes are present which can be divided
into distinct structures near the stagnation line and a region further downstream; (ii) as a result of compressibility acoustic
modes will appear; (iii) the interaction between the moving bow shock and the boundary layer might give rise to a special
type of instabilities; (iv) finally, wave packet modes propagating near the edge of the boundary layer describe the convective
nature of the flow. As we have previously seen for the compressible mixing layer, the mere existence of acoustic modes has
put considerable strain on the global stability analysis which necessitated the use of additional tools such as a Cayley trans-
formation and preconditioning to extract pertinent stability information from the direct numerical simulations (DNS). With
its even more complex stability features, supersonic flow about a swept parabolic body requires to an even greater extent the
incorporation of such tools into an effective, robust and efficient DNS-based global stability solver. Without these tools cer-
tain parts of the global spectrum will simply not be accessible, and a complete picture of the full perturbation dynamics of
this flow would be out of reach.

Our direct numerical simulations are based on the same implementation as used before for the compressible mixing
layer; in addition, a moving curvi-linear grid and shock-fitting techniques have been incorporated (for details the reader
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(see Fig. 10(c)). Stable and unstable acoustic global modes are presented in Fig. 11. The unstable mode ðA1Þ shows a dom-
inant spatial structure downstream of the bow shock (see Fig. 11(a)), while the more stable modes ðA2;A3Þ exhibit smaller
spatial structures which extend into the boundary layer (see Fig. 11(c)).

These results clearly demonstrate that our DNS-based global stability solver is capable of producing hydrodynamic sta-
bility information for flow configurations as complicated as the above. It further instills confidence that similar findings can
be obtained for flow situations that are dominated by a wide range of spatial and temporal scales as well as multi-physics
phenomena.
6. Discussion and conclusions

A DNS-based iterative stability solver has been developed and successfully applied to study the hydrodynamic global sta-
bility of a compressible mixing layer and a supersonic flow about a swept parabolic body. In general, this combination of
modern iterative techniques such as the implicitly restarted Arnoldi method (IRAM) and direct numerical simulations
(DNS) using a Jacobian-free formulation readily enables global stability analyses of complex flows for which the underlying
computations faithfully and accurately capture the dominant physical processes. For flows that are characterized by multi-
physics features or a wide range of temporal and spatial scales a mapping such as the Cayley transformation is required to
access specific parts of the full global spectrum and to ensure the convergence of the global stability solver. Preconditioning
y z� �

q�w��Kandw1
enote, respectively, the leading-edge radius of the parabolic body, the freestream velocity, the sweep angle andthe resulting sweep velocity. (b) Streamlines (in blue) and pressure field in [Pa] of the computed steady base flow for a sweep Reynolds numberRes

w1
= r

800 and a sweep Mach number Mas
wc 1:25. The resolution is 128 �255 points in the normaldirection and the chordwise3050

607080480 490Fig. 9.Subsets of the full global spectrum (forbº0:314) computed with our proposed global stability solver (mº80;kº32;tol º10 ;� º10 ; the
linear solver tolerance was chosen astol

º10 fi): (a) most unstable boundary-layer modes and (b)
eigenvalues belonging to acoustic modes.



Fig. 10. Spatial structure of a sample of associated global boundary-layer modes: (a,b) shape of the chordwise and the normal velocity component u and v,
respectively, of a slow-moving boundary-layer mode ðB1Þ in the x� y-plane near the attachment line; (c) shape of two faster-moving modes ðB2; B3Þ
displayed by iso-surfaces of the normal velocity v.

Fig. 11. Spatial structure of a sample of associated global acoustic modes visualized by the pressure p in the x� y-plane: (a) unstable mode ðA1Þ and (b)
faster-moving stable modes ðA2;A3Þ.
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is further mandatory to robustify the stability solver and to enhance its performance. Among the class of ILU-based tech-
niques, ILUT was found to perform best.

For large-scale applications where a parallel computing approach is necessary or desirable the proposed global stability
solver can be parallelized in a straightforward manner. For a successful application of a parallel version of the underlying
DNS-code the reader is referred to [41]; for a parallel implementation of the employed implicitly restarted Arnoldi method
(IRAM), the publically available software package PARPACK [28] provides parallelization details. Only the ILU-based precon-
ditioning technique might be difficult to optimize for parallel environments.
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Even though, the presented hydrodynamic global stability solver has been designed to treat complex stability problems it
should be kept in mind that the interaction of multi-physical processes and numerical convergence behavior leads to a com-
plicated dynamics which requires the careful adjustment of the governing parameters to obtain robust solutions. The appro-
priate choice of parameters has to be equally based on a physical understanding of the flow and a familiarity with the
convergence behavior of the iterative methods. For this reason, each flow configuration under investigation has its inherent
dynamical properties, and the question of proper parameter choices for a robust convergence of the global stability solver
has to be answered anew.
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